Bayesian inference of protein-protein interactions from biological literature

نویسندگان

  • Rajesh Chowdhary
  • Jinfeng Zhang
  • Jun S. Liu
چکیده

MOTIVATION Protein-protein interaction (PPI) extraction from published biological articles has attracted much attention because of the importance of protein interactions in biological processes. Despite significant progress, mining PPIs from literatures still rely heavily on time- and resource-consuming manual annotations. RESULTS In this study, we developed a novel methodology based on Bayesian networks (BNs) for extracting PPI triplets (a PPI triplet consists of two protein names and the corresponding interaction word) from unstructured text. The method achieved an overall accuracy of 87% on a cross-validation test using manually annotated dataset. We also showed, through extracting PPI triplets from a large number of PubMed abstracts, that our method was able to complement human annotations to extract large number of new PPIs from literature. AVAILABILITY Programs/scripts we developed/used in the study are available at http://stat.fsu.edu/~jinfeng/datasets/Bio-SI-programs-Bayesian-chowdhary-zhang-liu.zip. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mapping of TP53 protein network using cytoscape software

TP53 acts as a tumor suppressor in cancer. It induces cell cycle arrest or apoptosis in response to cellular stress and damage. p53 gene alteration could cause uncontrolled cell proliferation.In the present study, we used TP53 gene as the seed in the construction of a protein-protein functional association network to identify genes that might involve in tumorgenesis process with TP53. TP53 prot...

متن کامل

Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic Bayesian networks

MOTIVATION Bayesian networks have been applied to infer genetic regulatory interactions from microarray gene expression data. This inference problem is particularly hard in that interactions between hundreds of genes have to be learned from very small data sets, typically containing only a few dozen time points during a cell cycle. Most previous studies have assessed the inference results on re...

متن کامل

Protein Secondary Structure Prediction: a Literature Review with Focus on Machine Learning Approaches

DNA sequence, containing all genetic traits is not a functional entity. Instead, it transfers to protein sequences by transcription and translation processes. This protein sequence takes on a 3D structure later, which is a functional unit and can manage biological interactions using the information encoded in DNA. Every life process one can figure is undertaken by proteins with specific functio...

متن کامل

Bayesian Inference of (Co) Variance Components and Genetic Parameters for Economic Traits in Iranian Holsteins via Gibbs Sampling

The aim of this study was using Bayesian approach via Gibbs sampling (GS) for estimating genetic parameters of production, reproduction and health traits in Iranian Holstein cows. Data consisted of 320666 first- lactation records of Holstein cows from 7696 sires and 260302 dams collected by the animal breeding center of Iran from year 1991 to 2010. (Co) variance components were estimated using ...

متن کامل

The protein-nanoparticle interaction (protein corona) and its importance on the therapeutic application of nanoparticles

Nanobiotechnology has provided promising novel diagnostic and therapeutic strategies which capable to create a broad spectrum of nano-based imaging agents and medicines for human administrations. Several studies have demonstrated that the surface of nanomaterials is immediately coated with suspended proteins after contact with plasma or other biological fluids to form protein corona-nanoparticl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Bioinformatics

دوره 25 12  شماره 

صفحات  -

تاریخ انتشار 2009